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Measurements of the force required for the pull-off of N polyvinylsiloxane fibrils
from glass surfaces reveal that it varies linearly with the total contact perimeter,
NS. This finding cannot be rationalized using existing models of adhesion. A
new model is introduced which exploits the analogy with rupture of brittle solids;
it proposes that fibril detachment under tension is controlled by weakest link
defects. The model predicts a power law dependence of the force; i.e., NSn with
exponent n varying between 1 and 2. The linear dependence found experimentally
arises when the defects are present with broad size dispersion.
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INTRODUCTION

When fibrillar and dimpled surfaces composed of polyvinylsiloxane
(PVS) (Fig. 1) are pressed against glass slides and then detached,
the total force, Fp, to pull apart the adhered components [1] was found
to correlate linearly with the perimeter of the contacts, St.

Fp ¼ cSt; ð1Þ

where c�1.5 N=m. Namely, the force is governed by the cumulative
perimeter of the fibrils involved in the contact (plus, in the case of
dimples, the exterior perimeter). There is no correlation with the total

Received 2 October 2007; in final form 4 June 2008.
Address correspondence to Robert M. McMeeking, Department of Mechanical

Engineering, University of California-Santa Barbara, Santa Barbara, CA 93106-5070,
USA. E-mail: rmcm@engineering.ucsb.edu

The Journal of Adhesion, 84:675–681, 2008

Copyright # Taylor & Francis Group, LLC

ISSN: 0021-8464 print=1545-5823 online

DOI: 10.1080/00218460802255558

675

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
1
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



contact area. This correlation cannot be rationalized by any of the
common adhesion models for single fibril tip contacts of perimeter
length S [2–5]. The Kendall [2] model gives a pull-off force
proportional to NS3=2 (where N is the number of adhered fibrils).
The van der Waals model [3], and the related forms by Derjaguin,
Muller, and Toporov (DMT) [4] and Maugis [5] predict a pull-off load
for flat-bottomed fibrils proportional to NS2. Moreover, all evident
embellishments of these models are inconsistent with a linear scaling
[1]. Some pull-off loads are known to scale in a linear manner with a
length, and many examples are given by Federle [6], with particular
relevance to natural systems. Adhesion of spheres (JKR) [7] leads to
a pull-off force proportional to the radius of the spheres. But the radius
of a sphere is not the perimeter of a contact. The force for peeling of a
tape scales with its width [8], but not with the perimeter of a contact.
Similarly, the natural examples summarized by Federle [6] do not

FIGURE 1 Scanning electron microscope images of (a) fibrillar and
(b) dimpled contact surfaces of flat PVS specimens. Reprinted with permission
from Varenberg, M., Peressadko, A., Gorb, S., and Arzt, E., Applied Physics
Letters 89, 1219050-1-121905-3 (2006), Copyright 2006, American Institute
of Physics.
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involve correlation of the pull-off load linearly with the perimeter of
contact. Consequently, a new adhesion model is required. The present
paper describes one hypothesis capable of providing scaling consistent
with the measurements [1]. It is based on the proposal that defects
and, therefore, weakest link statistics [9–12], complemented by global
load sharing [13], govern the pull-off force.

ADHESION OF AN ARRAY OF FIBRILS WITH DEFECTS

Fibrils formed from PVS as reported in [1] are imperfect and replete
with defects in the tip shape (Fig. 1), suggesting that their adhesion
be controlled by the defects acting as stress concentrators. The concept
(Fig. 2) envisages a fibril tip adhered to a glass surface, incorporating
a shallow detached intrusion, extent a, into the otherwise circular
adhesion. The pull-off stress, R, for a compliant PVS fibril with this
defect is deduced from fracture mechanics [14]:

R ¼ 1

F

ffiffiffiffiffiffiffiffiffiffiffi
2E�c
pa

r
; ð2Þ

where F is a factor depending on the shape of the defect (it is of order
unity when the detachment is approximately circular), E� is the

FIGURE 2 Tip of a fibril with detachment defects.
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reduced modulus given by 1=E� ¼ 1� n2
1

� �
=E1þ 1� n2

2

� �
=E2, [with Ei

as Young’s modulus and ni as Poisson’s ratio, the subscript i ¼ 1 or 2
indicates the adhering material (1 indicates the fibril and 2 is the flat
surface)], and c is the work of separation. When defects are very small,
surfaces can still interact adhesively across them, and pull-off
strength is essentially unaffected by their presence [15]. Thus, we
assume that some defects have a size significantly greater than
E�y=r2

o so that they do control the conditions in which detachment
will occur, where ro is the peak strength of the attraction between
the surfaces. Should defects as depicted in Fig. 2 be distributed ran-
domly around the perimeter and have large number density, then,
whenever the fibrils are subjected to uniform tensile stress, r (the load
per unit cross-sectional area), the probability, U, that the fibrils
remain adhered to the glass surface would be governed by weakest
link statistics [9]. The ensuing expression for the fraction of attached
fibrils is

U r;Sð Þ ¼ exp �ðS=S0R0Þ
Z r

0

gðRÞdR

� �
; ð3Þ

where gðRÞdR is the number of defects per unit length of perimeter
that cause pull-off at stress between R and Rþ dR [related to the size
of the defects through Eq. (2), and the distribution of defects g(a); Fig. 2]
with S0 and R0 being reference values of the perimeter and strength,
respectively. Accordingly, the larger the circumference, S, the great-
er is the probability that the fibril detaches. Note, however, that
when the fibrillar structure is refined at constant area of contact,
the probability of detachment will be reduced, consistent with obser-
vations that adhesion is improved when fibrils are made smaller [16].
The proposed model is analogous to that used to characterize the size
effect associated with the rupture of brittle solids [10–12].

Consider fibrils exposed to a stress that increases monotonically,
starting from zero, with all fibrils initially adhered to the glass
surface. The total load on the array of N identical fibrils at any stage is

F ¼ S2

4p

XN
j¼1

rjU rj;S
� �

; ð4Þ

where rj is the current stress in fibril j. We now invoke global load
sharing [13]. Namely, the load shed from each detached fibril does
not concentrate in the surviving neighbors. Rather, it spreads out over
all attached fibrils. This premise is deemed reasonable for compliant
fibrils having length substantially in excess of their diameter. The
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load on the array of fibrils then becomes

F ¼ NS2r
4p

U r;Sð Þ: ð5Þ

The limit of adhesion of the array under load control occurs when F
reaches its maximum, at dF=dr ¼ 0, leading to a stress, rp, in each
fibril at detachment given by solving:

rp

R0
g

rp

R0

� �
¼ S0

S
: ð6Þ

Substitution into Eq. (5) gives the pull-off load for the array

Fp ¼
NS2rp

4p
exp � Srp

S0R0

Z 1

0

gðrp

R0
nÞdn

� �

� NS

4p
S0R0

gðrp=R0Þ

� �
exp � 1

gðrp=R0Þ

Z 1

0

gðrp

R0
nÞdn

� �
; ð7Þ

where n ¼ R=rp. Of course, a dependence on fiber diameter would
enter for self-similar pillar structures at fixed area of contact as
NS would scale inversely with diameter. Equation (7) shows
that linear dependence of Fp on NS would, thus, arise if g were
independent of rp, implying a broad dispersion of flaw size, as elabo-
rated next.

It is convenient to demonstrate the ensuing trends by introducing
a specific functional form for the strength distribution. Invoking
the power law function proposed by Weibull [9], we find that the
distribution becomes:

g Rð Þ ¼ mRm�1

S0Rm
0

; ð8Þ

where m is the shape parameter. The fibril stress at pull-off becomes

rp ¼ R0
S0

mS

� �1=m

: ð9Þ

Note that this result confirms that when a fibrillar surface is refined at
constant contact area, the adhesion improves, consistent with experi-
mental observations [16]. From Eqs. (5) or (7) the pull-off force is:

Fp ¼ WNSn; ð10Þ

where n ¼ 2-1=m and W ¼ So=mð Þ1=mR0e�1=m=4p. This result provides
two insightful limits: deterministic and stochastic.
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Deterministic

In this limit, m!1, fibril pull-off occurs at a stress r ¼ R0, such that
Fp ¼ R0=4pð ÞNS2, in agreement with the van der Waals=DMT result
[3,4]. Moreover, the Kendall [2] prediction of the pull-off force,
Fp ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E�cS3

p
=p, can be recovered from Eq. (10) by using the equality

R0 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�c=S

p
.

Stochastic

When m ¼ 1, the size distribution of defects is widely dispersed. In
this case,

Fp ¼
S0R0

4pe

� �
NS: ð11Þ

Comparison with Eq. (1) gives c ¼ SoRo=4pe, such that SoRo � 50 N=m.
Note that there are no geometric parameters in Eq. (11), so that
the pull-off force is independent of the size of the specimen and the
diameter of the fibrils, in agreement with the data [1]. The result also
predicts that the pull-off force is independent of the area density of the
fibrils.

CONCLUDING REMARKS

An approach for analyzing fibril detachment as a defect-controlled
process has been presented. When combined with global load sharing,
it has been demonstrated that, in the stochastic limit, the predictions
conform with the linear scaling, Fp � NS, found in the pull-off
measurements performed by Varenberg et al. [1]. More generally,
the approach suggests that the scaling with fibril perimeter could vary
as a power law with exponent in the range 1 � n � 2, dependent on the
dispersion in the size of the imperfections around the perimeter.
Indeed, data obtained by Greiner, del Campo, and Arzt [17], for
improved fibrils having fewer and smaller detachment defects, may
be suggestive of a nonlinear scaling with fibril perimeter.
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